

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master’s Thesis 2021

Industrial IT and Automation Online

Implementation
of Intelligent User Interface for Open-
Source Software Configuration Library

Håvard Nordhus Kråkenes

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master’s Thesis, 2021

Title: Implementation of Intelligent User Interface for Open-Source Software Configuration

Library

Number of pages: 53

Keywords: Software Development, Python, Agile, Software Configuration, Intelligent User

Interface, Text-based User Interface, Open-Source

Student: Håvard Nordhus Kråkenes

Supervisor: Hans-Petter Halvorsen

External partner: Equinor ASA

Summary:

Configuration is one of many challenges of software development. Modern software

requires configuration in one form or another, often by input parameters stored in

configuration files.

Equinor has developed an open-source configuration library in Python called Config Suite

for working with configuration files. This library is used to create a schema, a “blueprint,”

of what the input parameters for the application should look like and parses it on runtime.

This means that the developer using this library will know everything about the expected

parameters inside the application and will not get invalid parameters.

The application’s users have to fill out a configuration file that is correct according to the

schema made by the developer. This can be a challenging task, especially for applications

with large configurations. This challenge is what this thesis aims to solve by developing

an intelligent user interface extension for Config Suite to help the users in filling out a

valid configuration according to the given schema.

The extension is developed in Python using Agile methodologies and modern open-

source development tools. The result is an efficient Text-based User Interface (TUI) that

provides an excellent solution to this thesis’s challenge. Being open-source and building

on Equinor’s open-source first strategy means the software is free to use, change, or

extend by anyone in the future.

 Preface

3

Preface
This Master’s thesis has been written in the spring of 2021 as part of the course FMH606

Master’s Thesis at the University of South-Eastern Norway. I have been an online student on

the course Master of Science in Industrial IT and Automation for three years while working

full time in Equinor.

The project originates from my passion for programming and coding, thus reaching out to our

company’s software development teams searching for exciting tasks. This project has been

composed with Markus Fanebust Dregi, which has also been the external supervisor for this

project.

These last three semesters have been both special and challenging because of the Covid-19

pandemic. In this unique situation, I have to thank the university and its teachers for being

exceptional in facilitating and helping the students to the best of their ability.

Finally, I would like to thank my supervisors Hans-Petter Halvorsen from USN and Markus

Fanebust Dregi from Equinor, for their excellent cooperation in bringing this project forward,

and Andrea Brambilla from Equinor for helping organize the project in the early phases.

Bergen, 19.05.2021

Håvard Nordhus Kråkenes

 Contents

4

Contents

Preface ... 3

Contents ... 4

Abbreviations .. 6

1 Introduction ... 7

1.1 Background ... 7
1.2 Objective .. 7
1.3 Methods ... 8
1.4 Scope ... 8
1.5 Thesis organization .. 8

2 Software Configuration .. 9

2.1 Background ... 9
2.2 Challenges ... 9
2.3 Data validation and parsing ... 11

2.3.1 Validation ... 11
2.3.2 Parsing ... 12

3 Config Suite ... 13

3.1 Challenges it solves ... 13
3.2 How it works .. 13

3.2.1 Schema ... 13
3.2.2 Collections ... 14
3.2.3 Error messages ... 15
3.2.4 Readable .. 15
3.2.5 Automatic generation of documentation .. 15
3.2.6 Validators ... 15

3.3 Current user workflow .. 16

4 Intelligent user interfaces ... 17

4.1 What is intelligence in user interfaces? ... 17
4.2 Examples of intelligent user interfaces .. 17
4.3 Interpretation of Intelligence ... 19

5 Concept selection ... 20

5.1 Alternatives ... 20
5.1.1 Graphical User Interface ... 20
5.1.2 Text-Based User Interface .. 21
5.1.3 Visual Studio Code Extension ... 22
5.1.4 Config Suite API .. 22

5.2 Discussing the alternatives ... 22
5.3 Concept selection ... 23

6 Software Development Background.. 24

6.1 Agile project management ... 24
6.1.1 User Stories and Epics ... 24
6.1.2 Kanban ... 25
6.1.3 Gantt ... 26

6.2 Python language background ... 27

 Contents

5

6.2.1 Python quick introduction .. 27
6.3 Testing during development .. 29

6.3.1 Manual testing ... 30
6.3.2 Automated testing ... 30
6.3.3 Test-driven development .. 30

6.4 Development environment and tools .. 31
6.4.1 Source control and Continuous Integration ... 31
6.4.2 Test coverage .. 32
6.4.3 Code quality ... 32
6.4.4 Code deployment .. 32
6.4.5 Documentation .. 32
6.4.6 Open-source software .. 32

7 Results ... 33

7.1 Usage ... 33
7.2 Frontend .. 36

7.2.1 Frontend Library ... 36
7.2.2 Custom components .. 37
7.2.3 Rendering Config Suite schema .. 37
7.2.4 Frontend to backend ... 38

7.3 Backend ... 38
7.3.1 Working with YAML files .. 38
7.3.2 Schema Plugin System ... 39
7.3.3 Interaction with Config Suite ... 40
7.3.4 Config Suite Schema .. 40
7.3.5 Configuration processing .. 41

7.4 Automated Testing ... 43
7.5 Deployment ... 44

7.5.1 Versioning and releases ... 45

8 Discussion ... 46

9 Conclusion .. 47

References ... 48

Appendices .. 52

 Abbreviations

6

Abbreviations
Abbreviation Definition

AI Artificial Intelligence

ML Machine Learning

CS Computer Science

IUI Intelligent User Interface

HCI Human Machine Interface

NLP Natural Language Processing

NLU Natural Language Understanding

UI User Interface

GUI Graphical User Interface

TUI Text-based User Interface

SSH Secure Shell

OOP Object-Oriented Programming

TDD Test-Driven Development

CI Continuous Integration

OS Operating System

IP Intellectual Property

TDD Test-Driven Development

XML Extensible Markup Language

YAML A recursive acronym for “YAML Ain’t Markup Language.”

JSON JavaScript Object Notation

HTML HyperText Markup Language

7

1 Introduction

1.1 Background

Software development and usage of said software can offer many challenges; configuration is

one of them. Modern software requires configuration in one form or another, either as the

software’s settings or as input parameters.

Examples of software settings can be storing the user’s choice of the software’s display

language or window size. Input parameters can be settings and parameters for a physics

simulation. These configurations will typically be stored in a file in the software’s directory.

The software developer is faced with software configuration challenges all the time. If the input

to the software is wrong, the software will fail. In small programs, this will probably just come

out as an error message right away, but for complicated software, with extended processing

time, it could take hours before reaching the line in the code where it ultimately fails.

For the user, the challenge is the opposite. How do they know what to put in the configuration

file? How can they be sure that their settings are valid before launching the software? Should

they just try and see if an error occurs? All of this will most certainly result in a bad user

experience.

The Software Innovation department in Equinor has faced these challenges and tried to solve

them by developing a tool called Config Suite (Equinor ASA, 2018a).

This tool creates a schema, a “blueprint,” of what the configuration should look like, both in

structure, field names, and accepted values. When the software is started, the software’s input

is verified either as valid or invalid. It will also give out understandable error messages to the

user about what is wrong with specific configuration parameters.

This does solve all the developer’s challenges by allowing them to write code without thinking

about the possibility of having invalid parameters in their code.

The users will now know that their configuration is valid if the software runs without raising

an error on execution. It will even give some understandable feedback on what is wrong if it

does not. However, this still requires the user to know what to write in the configuration file in

the first place. What if the user only uses the software once every other month? What if the

configuration has hundreds or thousands of lines to fill? The user will most certainly not

remember what everything in the configuration file means and will often have to read the

documentation or seek others’ advice.

The objective of this Master’s thesis is to solve the users’ challenges.

1.2 Objective

This Master’s thesis project aims to extend Config Suite (Equinor ASA, 2018a) with an

intelligent user interface to help developers and users with the process of filling configuration

files according to Config Suite’s schema.

8

Several approaches will be assessed and discussed later in this thesis. The focus is function

over form, and it will be developed based on actual user requirements and feedback. The

project’s goal is to have a tool that many Config Suite users will use in their daily work.

1.3 Methods

Development of the tool will be done in close collaboration with the Software Innovation

department in Equinor. The development process will, therefore, replicate how Equinor does

software development internally.

1.4 Scope

This project’s scope is to develop a user interface extension for Config Suite (Equinor ASA,

2018a). It will be a standalone package and not built into Config Suite.

1.5 Thesis organization

Chapter 2 introduces software configuration and its challenges.

Chapter 3 introduces Config Suite, how it works and what this project aims to extend.

Chapter 4 discusses intelligent user interfaces and its use in this project.

Chapter 5 presents and compares the different concepts evaluated for this project.

Chapter 6 describes the development process and the used tools and resources.

Chapter 7 presents the results of the software development.

Chapter 8 discusses the findings and development of the project.

Chapter 9 presents the conclusion.

This thesis follows the IMRAD model, short for Introduction, Method, Results, and

Discussion. The thesis is written for an audience with a technical background and some insight

into software development.

9

2 Software Configuration

2.1 Background

Modern software often supports or requires many external options and parameters to be

specified by the user. These are usually stored in one or more configuration file(s). The

configuration file can define parameters, options, settings, and preferences for the software.

The configuration files are written with plain text in a serialization format, e.g., Extensible

Markup Language (XML), YAML, or JavaScript Object Notation (JSON). These formats are

used to represent complex data structures in a way that is easily stored and parsed. Normal

file extensions for configuration files are .cnf, .conf, .cfg, and .ini (Bigelow, 2018), though

the files can have any extensions. The more descriptive extensions like .json, .xml and .yml is

commonly used by developers.

Examples of configuration parameters can be the application’s locale settings, input data for

processing by the application, or a list of experiment results. An example configuration,

which is a primitive product database in JSON format, can be seen in Figure 1.

Figure 1: Configuration example with JSON formatting

This example will be used in the coming subchapters.

2.2 Challenges

There are many challenges when working with configuration files. Some apparent challenges

are parameter naming, parameter type, file formatting, allowed values, or if a parameter is

required or optional. This is illustrated in Figure 2.

10

Figure 2: Visualisation of configuration file challenges

The names of the parameters must be precisely the same as what is anticipated by the

application. The example in Figure 1 has just nine different names per database entry and will

not propose a challenge if the objective is to add another entry to the database. It can,

however, propose a challenge if the configuration file is empty. When reading the

configuration file programmatically, each parameter’s name is essential to connect with the

software’s corresponding parameter.

In a programming language, all parameters have a defined type. These types are according to

a set of rules, usually set by the programming language type settings. In the configuration

example in Figure 1, we can see many different parameter types, including String, Boolean,

Integer, Float, and DateTime. However, there is no information about what type each

parameter should be or how to format the DateTime. The challenge with parameter types is

that each parameter written in the code expects to get a specific parameter type. If the

parameter type imported from the configuration file is wrong, the software may not load it

successfully.

When working with large configurations, it can be challenging to have correct file structure,

such as correct indentation and control of the file’s different brackets. The example in Figure

1 has two indentation levels, but imagine a configuration file with over 1000 lines and lots of

indentations. The complexity of maintaining a configuration file manually will escalate

exponentially as its size increases.

Entering parameters in a plain text file is a manual task with no feedback. It will be hard to

know if the application requires all parameters or if some of them are optional. There could

also be strict rules on which values each parameter can hold. For example, these rules can be

exact naming, values in an interval between X and Y, or minimum or maximum length.

11

The files can come pre-filled with examples, but the documentation will often have to be

utilized to make a valid configuration without any background knowledge.

2.3 Data validation and parsing

Validation and parsing are two very similar but slightly different ways of checking if a

configuration parameter is equal to its designed blueprint.

Figure 3: Flow chart comparison of validation vs. parsing

2.3.1 Validation

Validation is a way of checking that the data entered is correct according to the given

parameter’s designed usage. We usually write a validator function that returns a Boolean for

whether the data is valid or not. If the validator returns false, it would also be possible to raise

an error to the user.

An example of a validator function written in Python from (Equinor ASA, 2018b) can be

seen in Figure 4. This function checks if the passed parameter is a name and returns a

Boolean. This is done by checking that the data is a string that only holds alphanumeric

characters or spaces.

Figure 4: Example of a validator function

The way the validator works will only guarantee a valid result at the time of validation. If the

validated parameter is changed after previously being validated, it would have to be

revalidated. Due to this, validation often has to be done many times throughout the code, as

illustrated in Figure 3 above.

Since Python is a strongly typed language (Wikipedia contributors, 2021), meaning the

interpreter keeps track of all parameter types, it will also automatically raise a type error if

any other types than a string are passed. Python is further discussed in chapter 6.2.

12

2.3.2 Parsing

Parsing builds on validation, but where a validator only returns a Boolean, a parser will also

return the information it learned (King, 2019). In other words, a parser also returns the

validated data. This way, the software can ensure that all functions that use the parser’s result

will work with valid data.

An example where the previous example has been rewritten as a parser can be seen in Figure

5.

Figure 5: Example of a parser function

Here, the function returns the name itself if the validation is true. If it is not, it will raise an

error.

When comparing validation and parsing, it is a significant benefit to using parsing. Validation

is typically done multiple times throughout the code, while parsing allows for doing all

checks at the start of the program execution. After the data has been parsed, it does not have

to be rechecked to know if it is valid or not (King, 2019). This is illustrated in Figure 3 above.

Config Suite is a Python package that takes advantage of the benefits of parsing.

13

3 Config Suite
As stated in the introduction, Config Suite is Equinor’s self-developed tool for configuring

software. This section will explain what Config Suite is and what it tries to accomplish,

focusing on the parts applicable to this project. This chapter’s information is collected from

Config Suite’s documentation (Equinor ASA, 2018b).

3.1 Challenges it solves

Config Suite is designed to parse external software configurations in YAML formatting. The

configurations are typically passed to Config Suite at the start of the program execution.

After Config Suite parses the configuration, it creates an immutable configuration object,

meaning that it is no longer possible to change it without re-parsing. This is a significant

advantage, as configuration software with mutable configurations also tends to inject

software state into the configuration, which is generally an anti-pattern. With an immutable

configuration, the developer has complete control over the available data in the code and does

not have to worry about invalid data.

Config Suite also provides its users with meaningful feedback if there are errors in their

configuration.

A figure showing the use of Config Suite can be seen in Figure 6.

Figure 6: A basic flow chart showing the use of Config Suite

3.2 How it works

This part will focus on how Config Suite works by going over some of the basic concepts of

Config Suite.

3.2.1 Schema

The core functionality in Config Suite revolves around what is called a schema. The schema

is a blueprint of all expected parameters of the host software and is defined by the developer.

An illustration showing the contents of the schema can be seen in Figure 7.

14

Figure 7: Visualisation of inputs to a schema

Basic schemas define expected parameter structures, names, and types. More advanced

schemas can define custom parameter types, required parameters, validators, description

messages, and error messages. An example of a basic schema can be seen in Figure 8.

Figure 8: Example of a basic Config Suite schema

To use the software, the user has to make a valid configuration based on the schema.

The configuration will only be valid if all the rules and requirements of the schema are

fulfilled. If the configuration is valid, an immutable Config Suite configuration object is

made, which in turn will be used by the software for all configuration parameters.

Config Suite has built-in support for a set of basic parameter types. The basic types are

String, Integer, Number, Boolean, Date, and DateTime. These types are all supplied with

standard type validators and errors. The developer can create custom parameter types with

custom validators and errors to use in their schema. The basic parameter types will be

supported by the UI developed in this project. Custom parameter types can easily be added at

a later stage.

3.2.2 Collections

The supported collections in Config Suite are List, Dict, and Named Dict. The List is a

sequence of parameters of arbitrary length, Dict is a dictionary with arbitrary keys, and

Named Dict is a dictionary where all the keys are known upfront. Lists and Dicts can only

hold one type of parameter, while the Named Dict can have parameters of different types.

Except for only holding specific types, they all work the same as Python Lists and

Dictionaries, which can be read more about in chapter 6.2.1.

The UI will support all collections from Config Suite.

15

3.2.3 Error messages

If there are errors when validating a configuration, Config Suite will raise a list of errors to

the user. It will inform the user of type errors, naming errors, and structural errors out of the

box. The developer can also implement custom error messages and type errors. An example

error output when trying to enter a String into the age field of the example in Figure 8 can be

seen in Figure 9 below.

Figure 9: Example of a Config Suite error

These error messages will be extracted and used in the UI to show the user where there are

errors in the configuration.

3.2.4 Readable

If a configuration is not valid, there is another validation function in Config Suite called

readable. This function checks whether the configuration follows the correct form of the

schema so that it can be used to fill in the schema even if the values are not valid.

An example of this is entering a String in an Integer field, it is not valid, but the software can

still read it.

3.2.5 Automatic generation of documentation

Config Suite has a built-in function to generate documentation for a given schema. This can

be done either programmatically or as a Sphinx extension. More details on Sphinx can be

seen in section 6.4.5.

Programmatic generation is done by passing the schema to the command

configsuite.docs.generate(schema). This returns documentation for the schema as

reStructuredText (Goodger, 2021). The generated documentation for the example schema in

Figure 8 can be seen in Figure 10 below.

Figure 10: Example of Config Suite generated documentation

3.2.6 Validators

Config Suite allows the developers to write custom validators, making it possible to validate

parameters in other ways than just type checking. Examples of this can be to validate that a

name only contains alphabetic characters and spaces or that the age is between 0 and 120.

An example of a schema using these two validators can be seen in Figure 11 below.

16

Figure 11: Example of a Config Suite schema using validators

3.3 Current user workflow

All use of Config Suite is currently done by code, either in a Python shell or in a Python

script. Usually, the schema and schema usage are hardcoded as part of a Python package,

where it is up to the user of the package to fill in a valid configuration file to use it. This can

be a challenging task depending on the supplied documentation and the availability of pre-

filled configuration files. Some configurations can even be over 1000 lines long. This makes

it hard to know what to write in each configuration file line, especially if one rarely uses the

Python package in question. A figure showing the current user workflow is shown above in

Figure 6.

This is one of the challenges this project is trying to solve by creating an intelligent user

interface intended to help users fill out schemas in configuration files.

17

4 Intelligent user interfaces
This chapter will in detail go through and reflect on the creation of an Intelligent User

Interface (IUI) for the Config Suite software.

4.1 What is intelligence in user interfaces?

The word “intelligent” in a user interface can be interpreted in many different ways. The most

common interpretation is the intersection between Human-Computer Interaction (HCI) and

Artificial Intelligence (AI) (Völkel et al., 2020). In academia and research, the term IUI is

used for a user interface with intelligent features.

In a paper by (Völkel et al., 2020), they analyzed 25 years of research papers to determine

what terms define an intelligent user interface. Though the terms have gotten more diverse as

time passes, the most used terms for describing the IUI itself were; adaptation, automation,

and interaction. An IUI also performs actions, in which the terms they found to describe the

actions done by an IUI were; assist, create, detect, and adapt.

These are just some of the many terms that can describe intelligent user interfaces and

highlight that the word “intelligent” is a broad expression.

From this abstract definition, we will explore some systems commonly characterized as

“intelligent.”

4.2 Examples of intelligent user interfaces

The most common IUI of modern times are chatbots, which businesses have widely adopted

for messaging apps, customer service, internal services, and much more. These chatbots save

countless hours yearly by answering simple questions and automating simple tasks so that

humans can focus on the more advanced problems. Many companies even try to hide their

human operators behind chatbot walls to save them from the most straightforward questions.

Equinor has a chatbot named Diggy, which is made to help employees find help and

information without having to talk to a human. A short chat with Diggy can be seen in Figure

12.

18

Figure 12: Conversation with Diggy, Equinor’s chatbot (Equinor ASA, 2021b)

The chatbots can relate to most terms found by (Völkel et al., 2020) as it is an assistant that

detects and adapts to the users’ questions and interacts with them like a human being. Modern

chatbots use many AI and Machine Learning (ML) concepts, such as Natural Language

Processing (NLP) and Natural Language Understanding (NLU), Pattern Matching, as well as

databases of scripted rules and replies (Adamopoulou & Moussiades, 2020).

Figure 13: Microsoft Office Assistant, Clippit, Nickname Clippy (Microsoft, 1997)

Another well-known IUI is Microsoft’s office assistant, often nicknamed Clippy, which gave

helpful hints in using their Office software suite from 1997-2003 (Microsoft, 1997). Though

it was very advanced at the time, it was not very “intelligent,” which resulted in people

feeling Clippy was intrusive and annoying, and it was later even made fun of by Microsoft

themselves.

Though Intelligent User Interfaces can seem “alive” and therefore “intelligent,” there are also

backend systems that help users complete tasks by automating and adapting to their input.

One such system, which also is one of the inspiration sources for this project, is the built-in

JSON schema editor in Visual Studio Code.

19

Figure 14: Visual Studio Code JSON editor (Microsoft, 2021)

This plugin helps the user fill in a JSON schema with auto-completion and can auto validate

the input against a user-specified schema. A screenshot from the auto-completion can be seen

in Figure 14.

4.3 Interpretation of Intelligence

For this project, the interpretation of intelligence is very similar to that of the JSON editor

described in chapter 4.2. The goal is to have a UI that helps the user fill in the Config Suite

YAML schemas.

Figure 15: Flow diagram of UI Intelligence

Adaption is, therefore, a vital term since the UI must adapt to the supplied schema. It also has

to detect the user’s input, interact with the user, and automate as many tasks as possible. A

flow diagram highlighting the intelligent functionality wanted from the UI can be seen in

Figure 15.

20

5 Concept selection
This project started as just an idea. This idea was further developed in the early phases of the

project, resulting in four different concepts. This chapter will explore the concepts and

discuss the final selection.

5.1 Alternatives

The idea from the start was to make an Intelligent User Interface for Config Suite. However,

what kind of user interface or what functionality it should have was an open topic. The idea

was to make an easy-to-use interface that would help the user fill out configuration files for

Config Suite.

During this process, it was vital to keep in mind that the primary users of Config Suite are

engineers, developers, and other skilled users that all are proficient in scripting and using

Linux as their Operating System (OS). This information let us make many assumptions and

choices that would usually be out of the question when creating software. For example, since

everyone is proficient in scripting and using Linux, we can assume that they also have

command line experience.

The resulting concepts were:

1. A Graphical User Interface (GUI)

2. A Text-Based User Interface (TUI)

3. An extension for Visual Studio Code

4. An API for Config Suite combined with a UI in a non-python framework

5.1.1 Graphical User Interface

The first concept is a GUI, which is the most common type of UI used in, for example,

computers and phones. It is a modern-looking UI with many visual elements and gives a great

user experience. In many cases, this would be the obvious choice for a UI in 2021. Python

can make modern GUIs for all OSs’, but it is not widely adopted since Python focuses more

on AI, Computer Science (CS), and other fields that mostly use text or other generated

output. This means that the tools to make GUIs in Python could be limited compared to other

GUI-capable programming languages like, for example, C#, Java, and JavaScript.

However, even if Python GUIs is unusual and has fewer tools than other programming

languages, it is still a viable option. One of the available libraries for making GUIs in Python

is Tkinter (Python Software Foundation, 2021b). A screenshot of a GUI made with Tkinter

can be seen in figure Figure 16 below.

21

Figure 16: Example of a Python GUI made in Tkinter (TutorialsTeacher, 2020)

5.1.2 Text-Based User Interface

Since the target group in Equinor is a strong adopter of Linux and Python, it made sense to

evaluate an option where the user interface is implemented in their most used tool; the

terminal.

The second concept is a TUI, a UI that is rendered into the terminal and usually navigated

with the keyboard. It has a very classical look to it, which looks like it could have been made

in the ’80s. This gives a basic and straight-to-the-point application without any extra fuss.

This implementation would be written in Python as a direct extension to Config Suite. An

example of a TUI can be seen in Figure 17.

Figure 17: Example of TUI, TelegramTUI (Krasnoselsky, 2018)

A benefit of this concept is that Python, in general, is very text-based. Most users run

applications, scripts, or the Python Shell from their terminal. This solution would let the users

run the application from the Python Shell and use the returned data for further processing.

22

TUIs are also great for remote usage. When configuring software for a Linux system, it does

not necessarily have to be on a personal computer. It can very well be for configuring a

simulation running on a remote Linux-based server or supercomputer. In Equinor, Linux and

Python are widely used for AI, ML, and CS, and many of these tasks are executed on high-

performance compute clusters. The TUI could then be launched in a Secure Shell (SSH)

remote session.

5.1.3 Visual Studio Code Extension

The third concept is a deviation from the traditional user interface. The concept is to make an

extension for Visual Studio Code. Visual Studio Code is a popular text editor made by

Microsoft, which has a rich extension system.

The concept here is much looser, as the extension system for Visual Studio Code is quite

extensive and open. This could result in, for example, an auto-complete configuration editor

inspired by the JSON editor shown in Figure 14 in chapter 4.2 above, a schema loader and

filler, or something completely different. This means that this concept needs more work to

mature into a final concept.

Another potential problem with this concept is that the extensions for Visual Studio Code are

written in TypeScript, which would make it tricky to communicate with Config Suite directly

since Config Suite is written purely in Python.

5.1.4 Config Suite API

A fourth concept was proposed and discussed loosely, namely an API wrapper for Config

Suite, to easily communicate with other programming languages. This would make it much

easier to extend Config Suite with a web GUI, a UI made in another programming language,

or make the Visual Studio Code extension more viable.

Therefore, this concept would be considered an enabler, combined with one of the other

proposed concepts.

5.2 Discussing the alternatives

The usability of each of the concepts is considered to be roughly equal. This means that the

technical differences will be used for evaluating the alternatives.

The Visual Studio Code extension concept has some significant uncertainties: the idea is very

open, and that the communication between TypeScript and Python could be a huge problem.

This could be solved by combining it with the API, but this option was discarded because of

limited time to develop this concept further.

The two other concepts, namely the TUI and the GUI, are much more similar and will be

compared in greater detail.

When evaluating the functionality, both will achieve precisely the same, just with a different

look and way of controlling the UI. The backend working of the different UIs’ could, in

theory, be identical.

23

The GUI provides a much more streamlined and modern look & feel than a TUI. It can also

be said to be much more self-explanatory and user-friendly to inexperienced users, according

to a study by (Chen & Zhang, 2007). The GUI will have a slight overhead of resource usage

and will generally be slower than a TUI. It can also be argued that a nice-looking graphical

interface often is designed to be pleasing to the eye, which could result in a form over

function design.

The TUI is a very minimalistic UI and is very much function over form because of its design.

However, this can often be an advantage when looking to increase a simple task’s efficiency.

The study by (Chen & Zhang, 2007) also proved this by testing how long time expert and

novice users needed to do the same task in a TUI and a GUI. The novices performed better on

the GUI, but the expert users were faster on the TUI. Our users can be considered experts,

and therefore this will advantage the TUI.

Another advantage in favor of the TUI is that it is much easier to use remotely. Since a TUI

can be launched in an SSH session with a remote compute cluster, it will be much easier to

use remotely than a GUI, which requires a screen output from the connected computer. This

weights the decision greatly because of the targeted users of the application.

5.3 Concept selection

After assessing the different concepts and discussing with the customer, making a TUI was

selected. The reason for choosing this was a combination of the previous subchapter’s

arguments and that the customer was more intrigued by that concept. In the end, it is all about

creating a product that the customer finds useful and enjoys using.

The following chapters will elaborate on the process and tools used to create the TUI and

explore the final product.

24

6 Software Development Background
This chapter will explain the methodologies and tools used for the software development

process of this project.

6.1 Agile project management

Agile is a buzzword in project management that has gotten a broad meaning, including

methodologies, tools, and processes. However, originally, it is a mindset. It is the result of the

Agile Manifesto (Beck et al., 2001) authored by 17 software developers in 2001. The Agile

Manifesto is a set of four values and twelve principles.

Today, the ecosystem around Agile is adopted widely in modern software development and

project management.

The Agile ecosystem is extensive and is mainly suited for teams and teamwork. Since this

Master’s thesis is a solo project, only the Agile mindset and a few Agile ecosystem parts

were adopted.

6.1.1 User Stories and Epics

User stories are one of the core components of Agile software development. It is a more user-

oriented way of describing how computer software should work compared to standard

requirements.

User stories build on the Agile mindset of putting people first. They are short stories written

by the system’s end-user to describe a feature they want in the final product. They usually

follow a standard pattern: “As a (type of user), I want (some goal) so that (some reason)

(Atlassian, 2021).

Epics are also user stories but are used for the project’s more significant milestones and often

hold a larger work body. An Epic can be built up of several smaller user stories. Each

development iteration, which spans over one to two weeks, usually holds one epic and several

user stories.

Figure 18: Agile development process

25

In Agile software development, the development of the software is split up into many smaller

parts. The user story represents one part of the system. One complete development cycle

(planning, building, testing, deploying) is carried out for each story. Each cycle builds upon

the previously completed software by adding another user story’s functionality. This is called

incremental development.

Since there is a functioning system after each cycle, it is possible to gather honest user

feedback many times during the system’s development. This is usually done between

development iterations.

User stories are the foundation of the software development in this project, where the user

stories and user feedback are supplied by the customer (Equinor).

A figure of the Agile process used in this project can be seen in Figure 18.

6.1.2 Kanban

A Kanban board is used to keep track of the tasks during the project’s software development.

It is a project management tool that is used to visualize work in progress. It is originally a

Lean practice that arose as a scheduling system for lean manufacturing at Toyota in the 1940s

(Kanbanize, 2021). Since Lean shares many similarities with Agile, it has also been adopted

into the Agile ecosystem (Agile Thought, 2021).

All the user stories start on the board’s left side, in the “story queue” or backlog. The user

stories move to the right over the board until it reaches the last stage and is complete. The

stages the stories go through in this project are; To do, In progress, and Done, where Done

means the changes have been deployed.

Figure 19: Example Kanban board state from this project

26

On the Kanban board, the number of stories on each stage is limited on purpose, as proposed

by (Patton, 2020). A maximum limit of two user stories can be in the “In progress” stage

simultaneously. The Kanban board is used for the development part of the project. An

example of a Kanban board state from this project can be seen in Figure 19. The entire

Kanban board can be seen on GitHub (Equinor ASA, 2021a)

6.1.3 Gantt

Gantt is an old method of making a complete plan for a project and not directly related to

Agile. It is related to the waterfall software development method, which is a predecessor of

Agile. The Gantt chart is a timeline chart that shows all planned activities and their planned

period and is commonly used for higher-level planning. However, it is not a suitable tool for

planning software development because it tends to render useless in projects with high

uncertainty. Because of this, the Gantt chart is used for planning and keeping track of project

milestones and overall tasks, and the Kanban board is used for detail planning of the software

development. A screenshot of the Gantt chart used in this project can be seen in Figure 20.

Figure 20: Gantt chart from project planning

27

6.2 Python language background

Python is the programming language used for this project. Python is a modern and trendy

programming language that has risen significantly on the popularity lists in recent years. It

was, in fact, the most used programming language in 2020 (Eastwood, 2020). Most of this is

due to the rise of AI, ML, and CS.

Even though Python has risen the ranks in later years, it is, in fact, an old programming

language. It was first released in 1991 by Guido Van Rossum as a successor to the

programming language named ABC (Wikipedia contributors, 2021).

Python is a strongly typed language (Wikipedia contributors, 2021) that comes with much

built-in functionality. Furthermore, what is not included can often be found as community-

made packages.

6.2.1 Python quick introduction

This subchapter will give a quick introduction to Python’s basic concepts central to the

development of the TUI.

Parameters: Python uses Dynamic typing, which means that we do not have to declare

parameter types implicitly like in, for example, Java (Bailey, 2020). Some of the main built-

in parameter types are the String, List, and Dictionary.

A string is an array of bytes representing Unicode characters. Each character can be extracted

using its index in the array. In Python, indexes start at zero, whereas many other

programming languages start at one.

Lists can store a collection of data, where each element in the List can be of any type.

Elements from a list can be extracted using the index of the wanted element, and the List can

also be iterated over to either extract info from all elements or look for a specific element

based on other parameters.

A Dictionary is similar to a List, except elements are referenced using a string key instead of

an index number. A value is appointed to each key in the Dictionary, where the value can be

of any type.

Examples of these parameters can be seen in Figure 21 below.

Figure 21: Example of Python parameter types

Indentation: Python does not use a semicolon to indicate indentation or braces to indicate

the content of classes and functions like other programming languages like C# and Java does.

Instead, it uses line indentation to indicate blocks of code. The number of spaces can vary,

but all within the same block must have the same indentation. Examples of indentation can be

seen in Figure 22 below.

28

Classes and functions: Python are an Object-Oriented programming language. Object-

Oriented Programming (OOP) is a programming design method where programs are

structured to bundle properties and behaviors into classes.

A class represents a new object type, which could, for example, be a dog. The dog class’s

attributes could be the dog’s name, age, race, and veterinary records. The class could also

have methods for adding a veterinary record or displaying its information.

Each dog is a new instance of the class, where each instance maintains the state of its

attributes and is separate from all the other dogs. An example can be seen in Figure 22.

Figure 22: Example Python Class

The __init__ method seen in Figure 22 is a required method in the class and is called a

constructor in OOP. It is an initialization method that is run every time a new instance of the

class is made and is used to set the class instance’s initial state. It can be passed an arbitrary

quantity of parameters, but the parameter called self is mandatory. This is a keyword in

Python to refer to the attributes of this particular instance of the class.

Inheritance: Inheritance in OOP is when a class inherits from another class, either extending

it or overwriting some parts of it. In the previous example, Dog could be a sub-class of

Animal, where the Animal class holds the information relevant for any animal types. The

Animal class can then be sub-classed with other animal types later without rewriting the

common parts. An example of this can be seen in Figure 23.

29

Figure 23: Example of Python Inheritance

In Figure 23, the __init__ function extends the same function from the parent class by using

the keyword super, while the display function overwrites the same function from the parent

class.

Loading libraries: In Python, all built-in or external libraries used in the code must be

imported at the top of the Python file. It is possible to import the whole library or just specific

parts of it. Examples of both can be seen in Figure 24 below.

Figure 24: Example of importing libraries in Python

6.3 Testing during development

Testing is an essential step when writing software. It is the only way of checking that the

code works as expected and needs to be done frequently during development. It is essential to

find bugs, flaws, and errors as early as possible in the development process when it is still

easy to fix. This type of testing is called functional testing.

It is also vital to ensure that all older programming still works after new changes are made to

the code. This type of testing is called regression testing.

For the remainder of this thesis, testing will be used as a common word for both types of

testing. There are primarily two ways of performing tests; manual or automatic.

30

6.3.1 Manual testing

Manual testing is performed simply by using the developed software. This is known as

exploratory testing and is a task that the developer should often do as it is the only way of

ensuring that the software is behaving as expected. It is also vital that the customer tests the

software with real-life use-cases because the developer and the customer might have

completely different ways of using it.

6.3.2 Automated testing

Manual testing can be very time-consuming, and we cannot expect humans to be consistent

and produce the same result every time. Therefore, scripted tests are used to test the systems

underlying functionality. Since it will give the same result every time, it can be used to figure

out exactly which part of the system is failing.

There are generally two types of automatic tests, the unit test and the integration test (Testim,

2021).

A unit tests check that one single component of the code operates as expected. An example of

a unit test can be testing that one specific function returns the expected value or performs the

correct action. Unit tests are usually in the so-called white-box testing group, which means

that the internal workings of the code are known to the test and test writer.

An integration test checks that different components of the system operate with each other.

An example of an integration test is performing a sequence of actions in a UI to execute

different system functions and check that the correct actions are taken. Integration tests can

be either white-box tests or black-box tests where the internal workings of the code are

unknown to the test and test writer.

Both unit tests and integration tests are utilized in this project. More details on the

implementation of automated testing can be seen in chapter 7.4.

6.3.3 Test-driven development

Test-Driven Development (TDD) is an iterative process in which the developer writes the

automated tests before writing the code.

A well-known TDD approach is called “Red, Green, Refactor” (Shore, 2005), described as a

three-step process shown in Figure 25.

Figure 25: TDD process “Red, Green, Refactor”

• Red: Write a small failing test without thinking about how to solve it.

• Green: Write a small amount of code to satisfy the test without thinking of how the

code is written. The answer could even be hardcoded if it passes the test.

31

• Refactor: Rewrite the code to improve it after the tests are passing. This means

removing duplicated code and other faults seen in the code and rewriting the code to

be more neat and tidy.

This process is repeated until the code is complete. Using this approach makes the thought

process much more pleasant, as only one task has to be solved at a time. Often, this process

will result in cleaner code and fewer bugs in the final product.

There are three general rules to follow when using TDD that has been proposed by (Martin,

2011):

1. It is not allowed to write any production code until first having written a failing unit

test.

2. It is not allowed to write more of a unit test than is sufficient to fail.

3. It is not allowed to write more production code than is sufficient to pass the currently

failing unit test.

This development approach is used for all applicable parts of the software development in

this project.

6.4 Development environment and tools

This section explores the different tools and services used throughout the development process,

mainly focusing on online services. The interconnection of these tools can be seen in Figure

26 below.

Figure 26: Interconnection of development tools

6.4.1 Source control and Continuous Integration

Source control is one of the essential tools in today’s software development. It stores the

history of all changes of the files in the project. Therefore, it can also revert to a previous

version of the code if mistakes are made.

Source control is also tightly connected with Continuous Integration (CI) tools, which are

used to automate tasks such as running tests, checking code quality, and deploying the code

when changes are made to the source control repository.

Git (Software Freedom Conservancy, 2021) is used for source control for this project through

the cloud service GitHub (GitHub Inc., 2021), which also provides the CI tool GitHub

Actions. The project will live under Equinor’s organization on GitHub, where it can be

further developed by in-house developers later. Each user story has its own pull request on

GitHub, which means that the complete history of the development of each user story can be

seen in detail.

32

6.4.2 Test coverage

When writing and running tests on the code, it is nice to know how much of the codebase the

tests cover. Tools exist that show which files and code lines are covered. An online service

will be used for this and connected to the project GitHub repository to check test coverage.

For this project, a service called Codacy (Codacy, 2021) is used to check test coverage.

6.4.3 Code quality

The code in this project is written according to the coding standards of the team behind

Config Suite. This means following the Black code styling (Langa et al., 2020). This code

style builds on a standard called PEP8 (Rossum et al., 2001). A few code checking tools will

be utilized to ensure the code follows the correct styling and standards. Flake8 (Cordasco,

2016) is a tool that will check that the code follows the PEP8 standard, and the Black tool

(Langa et al., 2020) will ensure that the code follows the Black code styling.

The book The Clean Coder (Martin, 2011) has also inspired how the code should be written,

for example, by having self-explanatory parameter and function names and writing self-

explanatory code where comments are kept at a minimum.

6.4.4 Code deployment

The project is deployed to PyPI, short for the Python Package Index (Python Software

Foundation, 2021a). This service is the standard for Python package installation and ensures

that everyone can install the software with a simple terminal command. The project can be

found under the name “configsuite-tui” on PyPI.

6.4.5 Documentation

User documentation for the project is made using Sphinx (Brandl, 2021), a tool that

automatically builds HyperText Markup Language (HTML) documentation from

reStructuredText. The documentation is stored in the GitHub repository and is then hosted on

the service Read the Docs (Read the Docs Inc., 2021). The documentation is automatically

built for new commits and releases on GitHub.

6.4.6 Open-source software

Equinor is a significant contributor to open-source software. They have an open-source first

strategy where the developed software should be open-source as long as there is no

Intellectual Property (IP), implying that it should be closed-source. The TUI developed in this

project will be made open-source under the MIT license, which lets anyone use, extend, or

change the source code without restrictions.

33

7 Results
This chapter will present the final product developed during this project. All the major parts

of the TUI will be detailed, including frontend functionality, backend functionality, testing,

deployment, and examples of usage. All changes throughout the development process can be

seen in the project’s GitHub repository (Equinor ASA, 2021a).

Figure 27: Screenshot of Config Suite TUI with a valid configuration

Config Suite TUI was developed between February and April of 2021 as the central part of

this thesis. It is a Python-based UI extension for Config Suite, which runs in the terminal on

Linux-based systems. A screenshot of the UI can be seen in Figure 27. More details about

Config Suite can be found in chapter 3.

The TUI was developed over four Agile iterations, which included four epics and 23 user

stories.

7.1 Usage

Config Suite TUI is installed with the command pip install configsuite-tui, after

which it can be opened by typing configsuite_tui in the terminal. Launching the

application this way presents the user with the screen seen in Figure 28, which asks the user

to load one of the available schemas.

34

Figure 28: UI after launching without options

The TUI can also be launched with command-line arguments to load a schema or

configuration at execution time. Configurations can also be passed without a schema if the

configuration file has the schema name annotated at the top, as shown in chapter 7.3.1 below.

The launch arguments can be seen in Figure 29.

Figure 29: Command-line arguments for the TUI

If the passed arguments are valid and both the schema and configuration exist, the TUI will

launch with these already loaded and immediately render them.

35

Figure 30: UI after loading schema

Figure 30 shows an example where both a schema and configuration are loaded. Now the

TUI is completely initiated and shows all applicable menu shortcuts for this view. This

schema has both a List and a Dictionary inside it. These can be opened by clicking on them

and will open as shown in Figure 31.

Figure 31: UI after opening a dictionary

All shortcuts in the application are shown in Figure 31. A collage showing all the different

menus of the TUI can be seen in Figure 32.

36

Figure 32: All menus of the TUI

In addition to the menus, there are popup messages to inform the users of errors and events.

Examples of an error and an informational popup can be seen in Figure 33.

Figure 33: Examples of popup messages from the TUI

7.2 Frontend

The frontend of the application is the part that is visible to the user. The focus here is to

deliver a good user experience and present the information generated by the application’s

backend logic. This subchapter will detail all the different sub-parts of the frontend

functionality displayed in the previous subchapter.

7.2.1 Frontend Library

The UI is built with a community library called npyscreen (Cole, 2014), a TUI library for

Python. It is based on Curses, “a library that supplies a terminal-independent screen-painting

and keyboard-handling facility for text-based terminals” (Kuchling & Raymond, 2021). This

is initially a low-level C library that was written for BSD Unix, but a Python wrapper for

Curses is built into Python.

37

The TUI library provides a more high-level approach than using Curses directly by providing

widgets and premade objects, making the developer’s job much more manageable.

This library was chosen over seven other TUI libraries. The reasons for choosing npyscreen

are simple; it was the only library that provided a good testing system and had great

documentation.

7.2.2 Custom components

The TUI library npyscreen comes with a selection of built-in widgets for forms, popups, and

menus. Common for them is that they are general and do not always fit perfectly with the

wanted implementation.

All the components used in this project have been customized to some extent. Examples of

this are all button texts in menus and popups, custom footers on the forms, and custom

functions for handling UI state. These customizations are made by using inheritance and

superclasses to overwrite and extend the widgets. More about inheritance and superclasses

can be read about in chapter 6.2. An example of this can be seen in Figure 34 below.

Figure 34: Custom class for Edit Collection menu

The code snippet in the example is the custom popup class for the “Edit Collection” menu, as

seen in the second row to the left in Figure 32. The first five lines overwrite the window size,

placement, and button text. The function overwrites the button creation because the original

widget had two buttons, but only one was needed.

7.2.3 Rendering Config Suite schema

After a schema is loaded and processed by the application backend, it is rendered to the

screen as widgets. There is one widget for each field in the schema, where the widget variant

and settings are type-dependent.

There are four different ways the TUI renders the fields. Integer, String, Float, Date, and

DateTime are all rendered as a text input field but are processed differently in the backend to

convert to the right type and validate the input.

38

Booleans are rendered as a multiple-choice field, where the only possible choices are true or

false. Lists and Dictionaries are rendered as static text buttons, which opens a new page with

the respectable List or Dictionary. Examples of all these can be seen in Figure 30 above.

7.2.4 Frontend to backend

The frontend and backend of the application are very tightly connected. All backend actions

are executed based on actions done by the user. Some vital backend functions are executed

often. For example, the function that updates and validates the configuration and updates the

application state is executed every time the user pushes a button on their keyboard. This

means that the configuration gets updated and validated for every character written in a field

and lets the user feel like the application is fast and works in real-time.

7.3 Backend

The backend of the application is like the engine of a car. It lives under the hood, but it is

what drives the application. This subchapter will detail all the different sub-parts of the

backend functionality of the TUI.

7.3.1 Working with YAML files

One of the primary tasks of the application is working with configuration files. An external

community library called PyYAML (Simonov, 2016) is used for reading and writing YAML

formatted files. When writing a file and saving the configuration, the TUI also annotates the

currently used schema into the file header. This makes it possible for the TUI to load a

configuration without specifying a schema. The header format can be seen in Figure 35

below.

Figure 35: Header format of the annotated configuration file

Figure 36 below shows the functions for working with the YAML files.

Figure 36: Functions for working with YAML files

39

These functions read and write the configuration between a Python Dict/List and the YAML

file. The function first extracts or writes the header before loading or dumping the YAML

information. Processing of loaded configurations can be seen in chapter 7.3.5 below.

7.3.2 Schema Plugin System

Config Suite schemas are supplied to the TUI through a plugin system. This plugin system

makes it possible for other Python modules to register their schemas with the TUI on

installation. This way, all installed Config Suite schemas from external packages become

automatically available in the TUI.

The plugin system is made using the community library Pluggy (Krekel, 2016), which

implements a hook system. The hook system is split into two parts; the hook specification

and the hook implementation. The host application (the TUI) provides the hook specification,

an empty function that other applications can fill for use in the host application.

The hook specification for the TUI is simple and can be seen in Figure 37 below.

Figure 37: Schema plugin hook specification

The hook implementation is a program-specific implementation of the hook specification.

This is implemented in every Python package which wants to register a schema with the TUI.

An example of a package using this hook specification to register its schema can be seen in

Figure 38 below.

Figure 38: Example of schema plugin hook implementation

The hook implementation must then be registered by linking the module to the host

application through Setuptools (Python Packaging Authority, 2021), the framework used to

40

install Python libraries and packages on a computer. Figure 39 below shows how the example

hook implementation is registered in the system.

Figure 39: Registering the plugin with Setuptools

7.3.3 Interaction with Config Suite

Config Suite can be thought of as the parent package to the TUI. This means that a lot of the

functionality of the application comes directly from communicating with Config Suite. More

about Config Suite can be seen in chapter 3.

There are two helper functions made to take care of Config Suite functionality. One which

checks whether the configuration is valid and collects all eventual errors. The other function

checks whether the configuration is readable. They can be seen in Figure 40 below.

Figure 40: Config Suite related functions

The validation function is executed every time a change is made in the TUI. This provides

instant feedback to the user on whether the inputted value is valid or not. The readable

function is executed when loading a configuration file to assess if the configuration can be

loaded with the given schema or not.

7.3.4 Config Suite Schema

A schema must be loaded for the TUI to work. When loaded, the schema is stored as its

original Config Suite configuration object in the application.

The TUI supports all standard functionality in Config Suite, meaning it supports all the

standard types and collections listed in chapter 3. It will also support all custom types that can

be rendered as a string field, but there is no guarantee that validation will work as expected. It

can, however, easily be extended to support any custom type completely.

41

The TUI will also extract optional description texts and eventual error messages from the

schema to present to the users.

7.3.5 Configuration processing

Around 70% of the application code is for processing and manipulating the entered

configuration based on frontend actions. The application uses many parameters for tracking

the application’s states, including the entered configuration, selected schema, current indexes

of the application, errors, and validation information.

The configuration state parameter is a dynamically generated data structure with nested Lists

and Dictionaries that store all information entered into the TUI. Since some of the collections

in a Config Suite schema have an arbitrary length, the state parameter structure cannot be

entirely generated upon creation. This is challenging to solve because of how data structures

work in Python.

Python lists are easy to work with as they can be extended, reduced, and changed.

Dictionaries are worse since keys must be removed and re-added to rename the key, and new

keys will always be added to the end of the Dictionary. Therefore the Dictionaries must be re-

created to change a key and still have it in the same position.

This could be solved using an OrderedDict in Python instead of the ordinary Dictionary, but

it was solved by creating another temporary configuration state parameter, which only holds

the currently selected page’s structure information. This makes it easy to recreate and reshape

the structure and then pass it back to the main state parameter.

This again proposes a new challenge: returning the newly reshaped structure into the correct

location in the nested structure of the main state parameter. Because of this, the application

only supports a set number of nested levels. For this project, it was agreed with the customer

to include four levels, including the base level, which can easily be extended in the future. A

third state parameter holds the indexing information needed to return the position-based

configuration to its correct location in the main state parameter.

The configuration in Figure 41 below will be used as an example to show how the

configuration processing works.

42

Figure 41: Example four-level configuration

This configuration is a four-level nested schema of a person’s owned cars and their previous

owners.

Imagine, using the given configuration above, that the user is currently editing the

previous_owners List of the first car. The temporary state parameter would then look seen

in Figure 42 below.

Figure 42: Position-based state parameter after selecting previous_owners of the first car

The index parameter would, in this case, hold the information seen in Figure 43 below.

Figure 43: Index parameter after selecting previous_owners of the first car

After the user has changed the currently selected configuration, i is passed back to the main

state parameter. Python cannot dynamically index a Dictionary or List when we want to

assign a new value to it; therefore, each index level must be done explicitly, resulting in the

TUI only supporting a chosen number of nested collections as described above. The solution

is to assign the values back to the main state parameter based on the length of the index

parameter, as seen in Figure 44 below,

Figure 44: Functions to return the selected configuration back into the main configuration

The result of this is a well-functioning workaround for how Python handles collections and

gaining more control of the state of the application by only examining parts of the

configuration at a time.

43

7.4 Automated Testing

Automated testing is done using the built-in Python library Unittest (Python Software

Foundation, 2021c). Due to the nature of the system, unit tests are written for the backend

functions working with YAML files and Config Suite, and integration tests are written for

testing the TUI.

Running tests for a visual application is tricky because of the need to simulate user actions in

the UI and check that the correct response is given both for the application’s frontend and

backend. This functionality is not built into most Python test runners, including Unittest.

Npyscreen comes with a built-in test functionality where it is possible to pass a sequence of

buttons to push when launching the test. All the UI tests are made so that the test runner

launches the application and clicks through the button sequence before exiting the

application. The response can then be asserted against expected values. An example of an

integration test can be seen in Appendix A. That is one of the primary integration tests which

tests loading a schema, filling it, and saving the file before asserting the output from the TUI

and the contents of the saved file.

The tests are executed automatically every time a change in the code is pushed to the GitHub

repository and will block code merging if the test fails. This proved to be a challenge, as

testing a TUI requires a screen output, and the test runner on GitHub’s CI tool does not

provide one. This issue was overcome by adding a community library called Invoke (Forcier,

2020). This library makes it possible to run commands, including Unittest, inside an emulated

terminal, also called a pseudo-terminal, with simulated screen output.

44

7.5 Deployment

Figure 45: Readme from Config Suite TUI GitHub Repository (Equinor ASA, 2021a)

45

GitHub is the most central location for the whole project. Here the source code is hosted, and

GitHub Actions execute CI tasks, including automated testing and deployment. The

screenshot in Figure 45 shows the readme which users are faced with on GitHub.

The software is licensed under the MIT license on GitHub. The license file in the base folder

explains the content of the license and Equinor’s copyright.

7.5.1 Versioning and releases

Official releases of the application are created manually on GitHub. These are created from a

chosen Git commit and include release notes and source code for the actual release. The

releases are tagged with a version number, which follows semantic versioning (Preston-

Werner, 2021). An example of a release with version 0.2.0 can be seen in Figure 46.

Figure 46: Release notes for version 0.2.0

Config Suite TUI has had eleven releases so far, where the final delivery of this project is at

version 0.2.3.

All releases are automatically uploaded using GitHub Actions to Equinor’s PyPi repository

with the assigned version and source code. Using PyPi, users can easily install Config Suite

TUI using the terminal command pip install configsuite-tui as long as they have

Python version 3.6 or higher installed on their computer.

46

8 Discussion
This project has attempted to improve an already great Python configuration library called

Config Suite by extending it with an Intelligent User Interface (IUI). There are many ways to

create an IUI, but we came up with four possible concepts by brainstorming together with the

customer.

The concepts were further matured before making a final selection. The chosen concept was

to make a Text-based User Interface (TUI), chosen over a Graphical User Interface (GUI)

and a Visual Studio Code extension. The reasons for choosing a classical TUI were based on

a technical evaluation and the customer’s desires. After finishing the development, it still

looks like a solid choice, with high performance, an intuitive plugin system, and a clean user

interface.

By choosing this concept, the development language was already set in stone. Since Config

Suite is written in Python, it would not be wise to make the TUI in any other language. When

using Python, many official and community libraries are used for different functions. For the

UI library itself, eight different libraries were examined in detail before selecting Npyscreen.

This library has given many challenges that had to be worked around by creating custom

components for most functions of the TUI. It has worked fine overall and provided a solid

testing functionality, which was one of the main reasons for choosing it.

The TUI was developed using Agile methodologies, and it was attempted to replicate how a

developer team in Equinor works as much as possible for a one-person team. The primary parts

adopted from Agile were the usage of user stories, epics, and continuous user feedback. This

has been a great contributor to organizing and developing the TUI in a controlled manner. The

other adopted tools, such as Kanban from Agile and Gantt from Lean, were used less than

planned since both are organization tools for teams, and since a one-person team develops this

project, it was more of an extra job to keep them updated. One of the 12 principles of the Agile

manifesto recommends reflecting on how to become more effective at regular intervals, and if

this software development were to continue any longer, these two tools would have been

discarded.

The final product is a functional UI that fulfills the goal of making it easier for users to fill in

configuration files without knowing anything about the context of the application. It does,

however, require the developers to enable the TUI by adding a hook implementation into their

application, so the schema(s) of their application becomes visible to the TUI’s plugin system.

The goal was to make a UI with intelligent features. The delivered TUI does not have

intelligence in the form of machine learning or artificial intelligence, but it makes the users’

life easier by adapting and automating many of the sub-tasks of creating and editing a

configuration for Config Suite, which is some of the most used terms for describing intelligent

systems.

Modern software development tools were used during the development process, and the TUI

extension now lives as open-source software licensed under the MIT license on Equinor’s

GitHub repository. Being an open-source software package means it can be used, extended, or

changed by anyone in the future.

47

9 Conclusion
This Master’s thesis project developed a Text-based User Interface (TUI) extension for Config

Suite. The TUI was developed using modern software development methodologies and tools

and in close collaboration with the customer, Equinor.

The resulting TUI is a solution to a challenge faced by the users of Config Suite, namely that

it is challenging to work with configuration files. The TUI solves this by providing an easy-to-

use, intelligent user interface that only lets users do actions valid for the chosen schema,

instantly validate their input, and auto-generate the configuration file in the correct format. This

means that the users no longer have to think about correct YAML formatting or invalid input.

Because of the plugin system of the TUI, the users do not have to think about adding the

schemas they need to the TUI since this is handled by the developers, making all installed

schemas automatically available.

The application is designed to be changed and extended by other developers to support their

needs. This is done by having a high coding standard and using known open-source

development tools. It also has a high degree of test coverage, which is unusual for similar open-

source TUIs, where usually only the backend functions are tested and not the TUI itself. This

will help developers by allowing them to extend the application without breaking the current

functionality. It is also supplied with user documentation, developer documentation in the

readme, and automatic code checking and deployment to PyPi.

The delivered application is considered complete and “free of bugs,” meaning all user stories

are implemented, and all discovered bugs up to the date of this thesis have been fixed.

Therefore, it is ready to be enjoyed by the users of Config Suite and will hopefully be a valuable

tool for software configuration in Equinor.

 References

48

References
Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. Artificial

Intelligence Applications and Innovations: 16th IFIP WG 12.5 International

Conference, AIAI 2020, Neos Marmaras, Greece, June 5–7, 2020, Proceedings, Part

II, 584, 373-383. https://doi.org/10.1007/978-3-030-49186-4_31

Agile Thought. (2021). Getting Started with Kanban. Retrieved 2021, from

https://agilethought.com/blogs/getting-started-with-kanban/

Atlassian. (2021). Agile project management - User Stories. Retrieved 2021, from

https://www.atlassian.com/agile/project-management/user-stories

Bailey, C. (2020). Dynamic vs Static. https://realpython.com/lessons/dynamic-vs-static/

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,

Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for Agile

Software Development. http://agilemanifesto.org/

Bigelow, S. J. (2018). Definition: Configuration File.

https://searchitoperations.techtarget.com/definition/configuration-file

Brandl, G. (2021). Sphinx. [Computer Software]. https://www.sphinx-doc.org/en/master/

Chen, J. W., & Zhang, J. (2007, Oct 11). Comparing Text-based and Graphic User Interfaces

for novice and expert users. AMIA Annu Symp Proc, 2007, 125-129.

Codacy. (2021). Codacy. [Computer Software]. https://www.codacy.com/

Cordasco, I. S. (2016). Flake8. [Computer Software]. https://pypi.org/project/flake8/

Eastwood, B. (2020). The 10 Most Popular Programming Languages to Learn in 2021.

https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/

Equinor ASA. (2018a). Config Suite. [Computer Software].

https://github.com/equinor/configsuite

https://doi.org/10.1007/978-3-030-49186-4_31
https://agilethought.com/blogs/getting-started-with-kanban/
https://www.atlassian.com/agile/project-management/user-stories
https://realpython.com/lessons/dynamic-vs-static/
http://agilemanifesto.org/
https://searchitoperations.techtarget.com/definition/configuration-file
https://www.sphinx-doc.org/en/master/
https://www.codacy.com/
https://pypi.org/project/flake8/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://github.com/equinor/configsuite

 References

49

Equinor ASA. (2018b). Config Suite Documentation.

https://configsuite.readthedocs.io/en/stable/index.html

Equinor ASA. (2021a). Config Suite TUI. [Computer Software].

https://github.com/equinor/configsuite-tui

Equinor ASA. (2021b). Diggy. [Computer Software].

Forcier, J. (2020). Pyinvoke. [Computer Software]. https://www.pyinvoke.org/

GitHub Inc. (2021). GitHub. [Computer Software]. https://github.com/

Goodger, D. (2021). reStructuredText.

https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html

Kanbanize. (2021). What is kanban? https://kanbanize.com/kanban-resources/getting-

started/what-is-kanban

King, A. (2019). Parse, don’t validate. https://lexi-lambda.github.io/blog/2019/11/05/parse-

don-t-validate/

Krasnoselsky, V. (2018). TelegramTUI. [Computer Software].

https://github.com/vtr0n/TelegramTUI

Krekel, H. (2016). Pluggy. [Computer Software]. https://github.com/pytest-dev/pluggy

Kuchling, A. M., & Raymond, E. S. (2021). Curses Programming with Python. Retrieved

02.02.2021, from https://docs.python.org/3/howto/curses.html

Langa, Ł., Willing, C., Meyer, C., Zijlstra, J., Naylor, M., Dollenstein, Z., & Lees, C. (2020).

Black. [Computer Software]. https://github.com/psf/black

Martin, R. C. (2011). The Clean Coder: A Code of Conduct for Professional Programmers (1

ed.). Prentice Hall.

Microsoft. (1997). Microsoft Office Assistant. https://en.wikipedia.org/wiki/Office_Assistant

https://configsuite.readthedocs.io/en/stable/index.html
https://github.com/equinor/configsuite-tui
https://www.pyinvoke.org/
https://github.com/
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://github.com/vtr0n/TelegramTUI
https://github.com/pytest-dev/pluggy
https://docs.python.org/3/howto/curses.html
https://github.com/psf/black
https://en.wikipedia.org/wiki/Office_Assistant

 References

50

Microsoft. (2021). Editing JSON with Visual Studio Code. [Computer Software].

https://code.visualstudio.com/docs/languages/json

Patton, J. (2020). Kanban Development Oversimplified. Retrieved 2021, from

https://www.jpattonassociates.com/kanban_oversimplified/

Preston-Werner, T. (2021). Semantic Versioning. https://semver.org/

Python Packaging Authority. (2021). Setuptools. [Computer Software].

https://pypi.org/project/setuptools/

Python Software Foundation. (2021a). The Python Package Index. [Computer Software].

https://pypi.org/

Python Software Foundation. (2021b). Tkinter. [Ccomputer Software].

https://docs.python.org/3/library/tkinter.html

Python Software Foundation. (2021c). Unittest. [Computer Software].

https://docs.python.org/3/library/unittest.html

Read the Docs Inc. (2021). Read the Docs. [Computer Software]. https://readthedocs.org/

Rossum, G. v., Warsaw, B., & Coghlan, N. (2001). PEP 8 -- Style Guide for Python Code.

https://www.python.org/dev/peps/pep-0008/

Simonov, K. (2016). PyYAML. [Computer Software]. https://pyyaml.org/wiki/PyYAML

Software Freedom Conservancy. (2021). Git. [Computer Software]. https://git-

scm.com/about/trademark

Testim. (2021). Unit Test vs. Integration Test: Tell Them Apart and Use Both.

https://www.testim.io/blog/unit-test-vs-integration-test/

TutorialsTeacher. (2020). UI in Python-Tkinter.

https://www.tutorialsteacher.com/python/create-gui-using-tkinter-python

https://code.visualstudio.com/docs/languages/json
https://www.jpattonassociates.com/kanban_oversimplified/
https://semver.org/
https://pypi.org/project/setuptools/
https://pypi.org/
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/unittest.html
https://readthedocs.org/
https://www.python.org/dev/peps/pep-0008/
https://pyyaml.org/wiki/PyYAML
https://git-scm.com/about/trademark
https://git-scm.com/about/trademark
https://www.testim.io/blog/unit-test-vs-integration-test/
https://www.tutorialsteacher.com/python/create-gui-using-tkinter-python

 References

51

Völkel, S. T., Schneegass, C., Eiband, M., & Buschek, D. (2020). What is "Intelligent" in

Intelligent User Interfaces? A Meta-Analysis of 25 Years of IUI. arXiv.

https://arxiv.org/pdf/2003.03158.pdf

Wikipedia contributors. (2021). Python (programming language). Retrieved 14 March 2021,

from

https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=

1011721004

https://arxiv.org/pdf/2003.03158.pdf
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1011721004
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1011721004

 Appendices

52

Appendices

Appendix A: Unittest example

class Test_Tui_With_Files(TestCase):
 pm = pluggy.PluginManager("configsuite_tui")
 pm.add_hookspecs(hookspecs)
 pm.load_setuptools_entrypoints("configsuite_tui")
 pm.register(test_schema_1)

 def setUp(self):
 # Create temporary directory
 self.tmpdir = tempfile.mkdtemp()
 os.chdir(self.tmpdir)

 def tearDown(self):
 shutil.rmtree(self.tmpdir)

 @mock.patch("configsuite_tui.tui.get_plugin_manager", return_value=pm)
 def test_tui_input_save_return_validate(self, mocked_pm):
 with tempfile.NamedTemporaryFile(dir=self.tmpdir) as tmpfile:
 testinput = [
 curses.KEY_DOWN,
 "Jane Doe",
 curses.KEY_DOWN,
 "Electrician",
 curses.KEY_DOWN,
 "35",
 curses.KEY_DOWN,
 curses.ascii.NL,
 curses.KEY_DOWN,
 curses.ascii.NL,
 curses.KEY_DOWN,
 "45.35",
 curses.KEY_DOWN,
 "1999-01-01",
 curses.KEY_DOWN,
 "2011-11-04T00:05:23",
 curses.KEY_UP,
 curses.KEY_UP,
 curses.KEY_UP,
 curses.KEY_UP,
 curses.KEY_UP,
 curses.KEY_UP,
 curses.KEY_UP,
 "^S",
 curses.ascii.NL,
 curses.KEY_RIGHT,
 curses.ascii.NL,
 curses.ascii.NL,
 curses.KEY_DOWN,
 curses.KEY_DOWN,
 curses.ascii.NL,
 "^Q",
 curses.ascii.NL,
 curses.KEY_RIGHT,
 curses.ascii.NL,
]
 npyscreen.TEST_SETTINGS["TEST_INPUT"] = testinput
 config, valid = tui(schema="test", test=True)

 self.assertEqual(
 config,
 {

 Appendices

53

 "name": "Jane Doe",
 "hobby": "Electrician",
 "age": 35,
 "active": True,
 "score": 45.35,
 "birthday": datetime.date(1999, 1, 1),
 "last_seen": datetime.datetime(2011, 11, 4, 0, 5, 23),
 },
)
 self.assertTrue(valid)
 test_string = (
 "!# configsuite-tui: schema=test\n"
 + "name: Jane Doe\nhobby: Electrician\nage: 35\nactive: true\nscore: "
 + "45.35\nbirthday: 1999-01-01\nlast_seen: 2011-11-04 00:05:23\n"
)
 self.assertEqual(
 tmpfile.read(),
 test_string.encode("utf_8"),
)

	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Methods
	1.4 Scope
	1.5 Thesis organization

	2 Software Configuration
	2.1 Background
	2.2 Challenges
	2.3 Data validation and parsing
	2.3.1 Validation
	2.3.2 Parsing

	3 Config Suite
	3.1 Challenges it solves
	3.2 How it works
	3.2.1 Schema
	3.2.2 Collections
	3.2.3 Error messages
	3.2.4 Readable
	3.2.5 Automatic generation of documentation
	3.2.6 Validators

	3.3 Current user workflow

	4 Intelligent user interfaces
	4.1 What is intelligence in user interfaces?
	4.2 Examples of intelligent user interfaces
	4.3 Interpretation of Intelligence

	5 Concept selection
	5.1 Alternatives
	5.1.1 Graphical User Interface
	5.1.2 Text-Based User Interface
	5.1.3 Visual Studio Code Extension
	5.1.4 Config Suite API

	5.2 Discussing the alternatives
	5.3 Concept selection

	6 Software Development Background
	6.1 Agile project management
	6.1.1 User Stories and Epics
	6.1.2 Kanban
	6.1.3 Gantt

	6.2 Python language background
	6.2.1 Python quick introduction

	6.3 Testing during development
	6.3.1 Manual testing
	6.3.2 Automated testing
	6.3.3 Test-driven development

	6.4 Development environment and tools
	6.4.1 Source control and Continuous Integration
	6.4.2 Test coverage
	6.4.3 Code quality
	6.4.4 Code deployment
	6.4.5 Documentation
	6.4.6 Open-source software

	7 Results
	7.1 Usage
	7.2 Frontend
	7.2.1 Frontend Library
	7.2.2 Custom components
	7.2.3 Rendering Config Suite schema
	7.2.4 Frontend to backend

	7.3 Backend
	7.3.1 Working with YAML files
	7.3.2 Schema Plugin System
	7.3.3 Interaction with Config Suite
	7.3.4 Config Suite Schema
	7.3.5 Configuration processing

	7.4 Automated Testing
	7.5 Deployment
	7.5.1 Versioning and releases

	8 Discussion
	9 Conclusion

